معادلات تفاضلية
في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقاتها هذه المعادلات . تبرز المعادلات التفاضلية بشكل كبير في تطبيقات الفيزياء و الكيمياء ، وحتى النماذج الرياضية المتعلقة بالعمليات الحيوية و الإجتماعية و الإقتصادية .
يمكن تقسيم المعادلات التفاضلية إلى قسمين :
تعرف رتبة المعادلة التفاضلية على أنها أعلى رتبة لمشتق موجود في هذه المعادلة : فإذا حوت المعادلة مشتق أول و مشتق ثان فقط تعتبر من الرتبة الثانية ... وهكذا .
المعادلات التفاضلية من الرتبة الأولي تحتوي على مشتقات أولى فقط .
طرق حل المعادلات التفاضلية
توجد طرق عديدة لحل المعادلات التفاضلية منها.
ويوجد أكثر من أسلوب للحل العددي وكذلك التحليلي
كما توجد معادلات مشهورة مثل معادلات لابلاس وبرنولي وغيرهم
راجع ما يلي :
درجة المعادلة التفاضلية :
- تتحدد درجة المعادلة التفاضلية حسب أس المشتق ذو الرتبة الأعلى .. مثلا إذا كانت المعادلة التفاضلية من الرتبة الثالثة ، أي أن أعلى تفاضل فيها هو التفاضل الثالث ، فدرجة المعادلة تتحدد حسب أس هذا التفاضل ، فإذا كان مرفوعا للأس 5 مثلا تكون المعادلة من الدرجة الخامسة ، وهكذا .
تنقسم المعادلات التفاضلية أيضا إلى خطية وغير خطية . وتكون المعادلة التفاضلية خطية بشرطين :
1- إذا كانت معاملات المتغير التابع والمشتقات فيها دوال في المتغير المستقل فقط أو ثوابت .
2- إذا كان المتغير التابع والمشتقات غير مرفوعة لأسس ، أي كلها من الدرجة الأولى .
وتكون غير خطية فيما عدا ذلك .
ملاحظة : كل معادلة تفاضلية خطية هي من الدرجة الأولى ، بينما ليست كل المعادلات التفاضلية من الدرجة الأولى هي خطية ، لأن الدرجة تتحدد حسب أس التفاضل الأعلى ، ومن الممكن أن تكون التفاضلات الأقل مرفوعة لأسس غير الواحد دون أن يؤثر ذلك على الدرجة ، وهذا يخل بشرط المعادلة الخطية .
- معادلة برنولي هي معادلة خطية .
معادلات تفاضلية
في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقاتها هذه المعادلات . تبرز المعادلات التفاضلية بشكل كبير في تطبيقات الفيزياء و الكيمياء ، وحتى النماذج الرياضية المتعلقة بالعمليات الحيوية و الإجتماعية و الإقتصادية .
يمكن تقسيم المعادلات التفاضلية إلى قسمين :
- معادلات تفاضلية نظامية تحتوي على توابع ذات متغير مستقل واحد و مشتقات هذا المتغير .
- معادلات تفاضلية جزئية تحتوي دوال رياضية لأكثر من متغير مستقل مع مشتقاتها الجزئية .
تعرف رتبة المعادلة التفاضلية على أنها أعلى رتبة لمشتق موجود في هذه المعادلة : فإذا حوت المعادلة مشتق أول و مشتق ثان فقط تعتبر من الرتبة الثانية ... وهكذا .
المعادلات التفاضلية من الرتبة الأولي تحتوي على مشتقات أولى فقط .
طرق حل المعادلات التفاضلية
توجد طرق عديدة لحل المعادلات التفاضلية منها.
- طرق تحليلية Analytic Solution
- طرق رقمية Numerical Solution
ويوجد أكثر من أسلوب للحل العددي وكذلك التحليلي
كما توجد معادلات مشهورة مثل معادلات لابلاس وبرنولي وغيرهم
راجع ما يلي :
درجة المعادلة التفاضلية :
- تتحدد درجة المعادلة التفاضلية حسب أس المشتق ذو الرتبة الأعلى .. مثلا إذا كانت المعادلة التفاضلية من الرتبة الثالثة ، أي أن أعلى تفاضل فيها هو التفاضل الثالث ، فدرجة المعادلة تتحدد حسب أس هذا التفاضل ، فإذا كان مرفوعا للأس 5 مثلا تكون المعادلة من الدرجة الخامسة ، وهكذا .
تنقسم المعادلات التفاضلية أيضا إلى خطية وغير خطية . وتكون المعادلة التفاضلية خطية بشرطين :
1- إذا كانت معاملات المتغير التابع والمشتقات فيها دوال في المتغير المستقل فقط أو ثوابت .
2- إذا كان المتغير التابع والمشتقات غير مرفوعة لأسس ، أي كلها من الدرجة الأولى .
وتكون غير خطية فيما عدا ذلك .
ملاحظة : كل معادلة تفاضلية خطية هي من الدرجة الأولى ، بينما ليست كل المعادلات التفاضلية من الدرجة الأولى هي خطية ، لأن الدرجة تتحدد حسب أس التفاضل الأعلى ، ومن الممكن أن تكون التفاضلات الأقل مرفوعة لأسس غير الواحد دون أن يؤثر ذلك على الدرجة ، وهذا يخل بشرط المعادلة الخطية .
- معادلة برنولي هي معادلة خطية .
معادلات تفاضلية