عدد حقيقي
من ويكيبيديا، الموسوعة الحرة
(تم التحويل من الأعداد الحقيقية)
اذهب إلى: تصفح, ابحث
مستقيم الأعدادفي الرياضيات تعرف مجموعة الأعداد الحقيقية بأنها : هي مجموعة الأعداد التي تتكون من مجموعة الأعداد الغير كسرية(R\Q) و مجموعة الأعداد الكسرية (Q). تشمل مجموعة الأعداد الكسرية مجموعة الأعداد الصحيحة (Z)و الكسور, و تشمل مجموعة الأعداد الصحيحة مجموعة الأعداد الطبيعية(N). وبذلك تكون: مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد الكسرية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية. حيث أن مجموعة الأعداد الطبيعية تبدأ من الصفر الصحيح إلى موجب ما لا نهاية بزيادة واحد صحيح في كل مرة ، أما مجموعة الأعداد الصحيحة فتشتمل على الأعداد من سالب ما لا نهاية بالاضافة إلى الصفر بالاضافة إلى الأعداد الموجبة التي تحتويها مجموعة الأعداد الطبيعية بزيادة واحد صحيح في كل مرة ، أما الأعداد الكسرية فتتكون من كسور الأعداد الصحيحة في صورة بسط و مقام, أما الأعداد الحقيقية فتشمل المجموعات السابقة كلها بالاضافة إلى الأعداد التي لا يمكن كتابتها على شكل كسور مثل الπ ( الباي) أي الأعداد اللا الكسرية.
يمكن تصور الأعداد الحقيقية بأنها أعداد غير متناهية على خط مستقيم.و تأخذ الأعداد الحقيقية اسمها من تضادها مع فكرة الأعداد التخيلية . كما يمكن لها أن تقوم بقياس الكميات المستمرة على اختلافها . يمكن التعبير عنها بالكسور العشرية التي تكون عادة سلسلة من الأرقام غير منتهية و غير دورية في حالة الأرقام غير الكسرية أو دورية في حالة الأعداد الكسرية .اذا نشأت فكرة الأعداد الحقيقية بسبب وجود أطوال لا يمكن التعبير عن قياسها باستعمال أعداد صحيحة أو كسرية ، لهذا يتم إنشاء مجموعة الأعداد الحقيقية و في هذه المجموعة المعادلة الآتية: x2 + a = 0 لها حل في هذه المجموعة
من ويكيبيديا، الموسوعة الحرة
(تم التحويل من الأعداد الحقيقية)
اذهب إلى: تصفح, ابحث
مستقيم الأعدادفي الرياضيات تعرف مجموعة الأعداد الحقيقية بأنها : هي مجموعة الأعداد التي تتكون من مجموعة الأعداد الغير كسرية(R\Q) و مجموعة الأعداد الكسرية (Q). تشمل مجموعة الأعداد الكسرية مجموعة الأعداد الصحيحة (Z)و الكسور, و تشمل مجموعة الأعداد الصحيحة مجموعة الأعداد الطبيعية(N). وبذلك تكون: مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد الكسرية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية. حيث أن مجموعة الأعداد الطبيعية تبدأ من الصفر الصحيح إلى موجب ما لا نهاية بزيادة واحد صحيح في كل مرة ، أما مجموعة الأعداد الصحيحة فتشتمل على الأعداد من سالب ما لا نهاية بالاضافة إلى الصفر بالاضافة إلى الأعداد الموجبة التي تحتويها مجموعة الأعداد الطبيعية بزيادة واحد صحيح في كل مرة ، أما الأعداد الكسرية فتتكون من كسور الأعداد الصحيحة في صورة بسط و مقام, أما الأعداد الحقيقية فتشمل المجموعات السابقة كلها بالاضافة إلى الأعداد التي لا يمكن كتابتها على شكل كسور مثل الπ ( الباي) أي الأعداد اللا الكسرية.
يمكن تصور الأعداد الحقيقية بأنها أعداد غير متناهية على خط مستقيم.و تأخذ الأعداد الحقيقية اسمها من تضادها مع فكرة الأعداد التخيلية . كما يمكن لها أن تقوم بقياس الكميات المستمرة على اختلافها . يمكن التعبير عنها بالكسور العشرية التي تكون عادة سلسلة من الأرقام غير منتهية و غير دورية في حالة الأرقام غير الكسرية أو دورية في حالة الأعداد الكسرية .اذا نشأت فكرة الأعداد الحقيقية بسبب وجود أطوال لا يمكن التعبير عن قياسها باستعمال أعداد صحيحة أو كسرية ، لهذا يتم إنشاء مجموعة الأعداد الحقيقية و في هذه المجموعة المعادلة الآتية: x2 + a = 0 لها حل في هذه المجموعة