منتدى طلاب جامعة الحديدة

أخي الزائر إن لم تكن عضواً في المنتدى فنحن ندعوك لكي تنظم إلينا وشكراً تحيات مدير المنتدى طارق البغوي

انضم إلى المنتدى ، فالأمر سريع وسهل

منتدى طلاب جامعة الحديدة

أخي الزائر إن لم تكن عضواً في المنتدى فنحن ندعوك لكي تنظم إلينا وشكراً تحيات مدير المنتدى طارق البغوي

منتدى طلاب جامعة الحديدة

هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.
منتدى طلاب جامعة الحديدة


+2
الكمراني
عبد الواسع عمر الرمانه
6 مشترك

    حلول النهايات

    عبد الواسع عمر الرمانه
    عبد الواسع عمر الرمانه
    طالب لا يضاها
    طالب لا يضاها


    ذكر
    عدد الرسائل : 1299
    العمر : 38
    البلد : اليمن
    القسم والمستوى : أستاد حاسوب
    المزاج : عسل+سكرزياده
      : حلول النهايات 15781610
    السٌّمعَة : 5
    نقاط : 430
    تاريخ التسجيل : 14/10/2007

    بطاقة الشخصية
    تخصصي: حاسوب
    المحافظة: الحديدة

    حلول النهايات Empty حلول النهايات

    مُساهمة من طرف عبد الواسع عمر الرمانه الأحد ديسمبر 21, 2008 9:08 pm

    تذكر أنه لإيجاد نهاية دالة عند نقطة بالتعويض المباشر أولا 0 و إذا كان الناتج صفر ÷ صفر نتبع الأتي
    1) التحليل : في حالة إمكانية تحليل البسط و المقام ثم حذف العامل الصفري ثم التعويض مرة أخري
    2) أن لم نستطيع التحليل نقسم البسط و المقام أو أحدهما علي العامل الصفري ( قسمة مطولة)
    ن
    م
    سن - أن
    سم - أم
    س ! أ
    3) نهــــا = × ( أ )ن م و قبل أن نطبق هذه النظرية لابد من التأكد من الشروط
    و هي ( معاملات س ، العدد ، الأسس ، الإشارة )
    4)إذا وجد في الدالة جذر تربيعي نضرب البسط و المقام في المرافق ثم الاختصار ثم الحذف و التعويض
    5) بعض النهايات تقسم إلي نهايتين ( في حالة الضرب أو الجمع )
    حــا س
    س
    ظــا س
    س
    س ! 0
    س ! 0
    6) نهـــــــا = 1 ، نهـــــــا = 1 * تذكر أن : جتـــا صفر = 1
    ـ إذا كانت الدالة معرفة علي قاعدتين
    تكون للدالة د نهاية عندما س ! أ إذا كان د( أ )+ = د ( أ ) ــ = ل .. النهاية اليمني = النهاية اليسري
    الإتصال :ـ يقال أن الدالة متصلة عند س = أ إذا كان
    ـ د( أ ) لها وجود ـ د( س) لها نهاية عند س! أ ـ د( أ ) = نها د( س) عندما س ! أ
    الإتصال علي فترة 0
    ـ إذا كانت الدالة د معرفة علي فترة ] أ ، ب [ فإن د تكون متصلة عليها إذا كانت معرفة علي كل نقطة تنتمي لها
    ـ تكون الدالة متصلة علي [ أ ، ب ] إذا كانت الدالة
    ـ متصلة علي الفترة المفتوحة ] أ ، ب [ ـ متصلة من اليمين عند أ ـ متصلة من اليسار عند ب
    ملاحظات :ـ
    1ـ دوال كثيرات الحدود متصلة علي ح 2ـ الدوال الكسرية متصلة علي ح - { أصفار المقام }
    3ـ دالتي الجيب و جيب التمام متصلتان علي ح
    ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
    قابلية الإشتقاق
    ـ يقال أن الدالة د قابلة للإشتقاق عند س = أ حيث أ ' المجال إذا كان
    د( أ + هـ ) - د( أ )
    هــــــ
    هـ ! 0
    د/ ( أ ) لها وجود أي أن نهـــــــــــــا لــــــهــــــــــــا وجــــــــــود ...
    ـ إذا كانت الدالة معرفة علي قاعدتين فإن الدالة تكون قابلة للإشتقاق عند س = أ إذا كان
    د( أ + هـ ) - د( أ )
    هــــــ
    د( أ + هـ ) - د( أ )
    هــــــ
    ـ الدالة متصلة عند س = أ
    هـ ! 0 +
    هـ ! 0 ــ
    ـ د/( أ )+ = د/ ( أ )ـــ أي أن نهــــــــا = نهــــــــــــا
    قواعد الإشتقاق
    1ـ مشتقة حاصل ضرب دالتين = م الأولي × الثانية + م الثانية × الأولي ..
    2) مشتقة خارج قسمة دالتين =( م البسط × المقام م المقام × البسط ) ÷ مربع المقام
    ء ع
    ء س
    ء ص
    ء ع
    ء ص
    ء س
    3) ص = جاس \ ص/ = جتاس ، ص = جتاس \ ص/ = - جاس ، ص= ظاس \ ص/= قا2 س
    4) إذا كانت ص = د(ع) ، ع = د(س) فإن = ×
    5) ص = [ د(س)]ن \ ص/ = ن [د(س)]ن- 1 × د/ (س) : م القوس × م ما بداخل القوس
    ء ( ص)ن
    ء س
    ء ص
    ء س
    6) مشتقة الثابت = صفر
    7) إذا كانت ص دالة قابلة للإشتقاق بالنسبة إلي س فإن = ن ص ن- 1 × ( الدالة الضمنية
    عبد الواسع عمر الرمانه
    عبد الواسع عمر الرمانه
    طالب لا يضاها
    طالب لا يضاها


    ذكر
    عدد الرسائل : 1299
    العمر : 38
    البلد : اليمن
    القسم والمستوى : أستاد حاسوب
    المزاج : عسل+سكرزياده
      : حلول النهايات 15781610
    السٌّمعَة : 5
    نقاط : 430
    تاريخ التسجيل : 14/10/2007

    بطاقة الشخصية
    تخصصي: حاسوب
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف عبد الواسع عمر الرمانه الأحد ديسمبر 21, 2008 9:10 pm

    2ملخص تفاضل
    )
    ـ تطبيقات علي المشتقات :ـ
    ـ التطبيق الهندسي .
    1) ميل المماس للمنحني = ظل الزاوية التي يصنعها المماس مع الاتجاه الموجب لمحور س = المشتقة الأولي
    2) قياس الزاوية = ( الميل shift tan ( و إذا كان الميل سالب تكون الزاوية منفرجة
    3) لإيجاد النقط 0 نكون المعادلات بحيث : إذا كان المماس // محور س تكون ص/ = 0
    4) إذا كان المماس // مستقيم فإن م المماس = م المستقيم
    4) إذا كان المماس عمودي علي مستقيم نحسب ميل المماس و(- ) المعكوس الضربي لـ م المستقيم
    5) إذا علم الميل تكون المشتقة = الميل ، و إذا علمت الزاوية تكون المشتقة = ظا هـ
    6) إذا كان المماس يوازي محور ص يكون مقام المشتقة = صفر
    7) عند التقاطع مع محور س نضع ص = صفر ،، عند التقاطع مع محور ص نضع س = صفر
    Cool معادلة المماس : ص- ص1 = م ( س - س1 )
    ـ معادلة العمودي : ص- ص1 = -1/ م ( س - س1 ) حيث م الميل، ( س1 ، ص1 ) النقطةالطلوب عندها المعادلة
    9) ميل الخط المستقيم : أ س + ب ص = جـ هو - أ / ب أو - معامل س / معامل ص [ س ، ص في طرف واحد ]
    أو ميل المستقيم = فرق الصادات / فرق السينات [ في حالة معرفة نقطتين عليه ]
    10) إذا كان المستقيمان متوازيان فإن مـ 1 = مـ 2 ــ إذا كان المستقيمان متعامدان فإن مـ1 × مـ 2 = - 1
    11) منحنيان متماسان يعني أن : لهما نقطة تقاطع ، مـ 1 = مـ 2 عند نقطة التقاطع
    12) منحنيان متعامدان يعني أن : لهما نقطة تقاطع ، مـ 1 × مـ 2 = -1 عند نقطة التقاطع ...
    ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
    ـ المعدلات الزمنية المرتبطة
    خطوات الحل: 1ـ نفرض رموز جبرية للمتغيرات 2ـ تكوين العلاقة الجبرية التي تربط المتغيرات 3ـ التفاضل للزمن
    ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
    سلوك الدالة :ـ
    لمعرفة فترات التزايد و التناقص نبحث إشارة د/ ( س ) بحيث إذا كانت

    ــ د/(س) > صفر تكون الدالة متزايدة ــ و إذا كانت د/ (س) < صفر تكون الدالة متناقصة
    2ـ لمعرفة نقط القيم العظمي و الصغري المحلية للدالة هناك طريقتان
    أ ـ عن طريق فترات التزايد و التناقص من رسم الشكل التوضيحي كما هو مبين
    ب ـ عن طريق المشتقة الثانية للدالة : بحيث إذا كان
    د// ( جـ ) < 0 تكون عند جـ قيمة ع م أما إذا كان د// (د ) > 0 تكون عند د قيمة ص م
    النقط الحرجة للدالة هي النقط التي تكون عندها د/ (س) = صفر أو د/ (س) ليس لها وجود ..
    القيم العظمي و الصغري المطلقة للدالة في فترة [ أ ، ب ]
    نحسب قيم س التي تجعل د/(س) = 0 و لتكن س1 ، س2 ، س3 ، ..... و النقط الحرجة للدالة .....
    ثم نحسب قيم د(س1) ، د(س2 ) ، ......... د( أ ) ، د( ب )

    فتكون أكبر قيمة هي القيمة العظمي المطلقة و أصغر قيمة هي القيمة الصغري المطلقة ..
    اختبار التحدب لأعلي و لأسفل و نقط الإنقلاب :
    عن طريق د// (س) : بحيث إذا كانت د//(س) < يكون المنحني محدب لأعلي
    ـ و إذا كانت د// (س) > يكون المنحني محدب لأسفل
    ـ نقـــــــــط الإنقـــــــلاب تفصــــــــل بين مناطــــــــــق التحــــــــــدب ...
    عبد الواسع عمر الرمانه
    عبد الواسع عمر الرمانه
    طالب لا يضاها
    طالب لا يضاها


    ذكر
    عدد الرسائل : 1299
    العمر : 38
    البلد : اليمن
    القسم والمستوى : أستاد حاسوب
    المزاج : عسل+سكرزياده
      : حلول النهايات 15781610
    السٌّمعَة : 5
    نقاط : 430
    تاريخ التسجيل : 14/10/2007

    بطاقة الشخصية
    تخصصي: حاسوب
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف عبد الواسع عمر الرمانه الأحد ديسمبر 21, 2008 9:12 pm

    ملاحظات هامة جداً :ـ
    1ـ عند النقط الحرجة د/(س) = 0 ـ النقط الحرجة قد تكون قيمة عظمي أو صغري محلية ( هذا هو نوعها )
    2ـ عند القيم العظمي و الصغري المحلية يكون د
    /(س) = 0
    3ـ عند نقط الإنقلاب تكون د// ( س) = صفر
    4ـ إذا كانت د
    // ( س ) > 0 علي يمين أ ، د// ( س ) < 0 علي يسار أ تكون عند أ نقطة إنقلاب
    ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
    خطوات حل مسائل تطبيقات القيم العظمي و الصغري المحلية :ـ
    1ـ نبدأ بتحديد المطلوب نجعله متغير تابع بعد فرض متغير مستقل
    ( مثل المساحة ، الحجم ، أكبر مجموع ، الأبعاد ، البعد ،
    ....) كلها متغيرات مستقلة
    2ـ نكون العلاقة و يجب أن تكون في متغيرين فقط .. (مستقل و تابع) ثم نفاضل الطرفين بالنسبة للمتغير التابع
    3ـ نجعل ص/ = صفر للحصول علي النقط الحرجة ثم بعد ذلك نجري أحد إختبارات القيم العظمي و الصغري .......
    ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
    قوانين التكامل :ـ




    الدالة
    تكاملها
    الدالة
    تكاملها
    أ
    أس + ث
    أ سن
    أ سن+1 / ن+1 + ث
    ( أ س + ب) ن
    (أ س + ب )ن+1 / ( أ × ن+1) +ث
    حاأس
    - جتاأس / أ + ث
    جتاأس
    جاأس / أ + ث
    قا2 أ س
    ظا أ س / أ + ث

    ملاحظات هامة جداً ..
    1ـ لا يوجد تكامل حاصل ضرب أو خارج قسمة دالتين ولا يوجد تكامل ظتا س أو قتا س أو قا س ......
    2ـ د/(س) يسمي المعامل التفاضلي أو ميل المماس لكن د// (س) يسمي معدل تغير ميل المماس ..
    قوانين هامة جداً لإجراء تكامل الدوال المثلثية..
    1ـ جتا2س + جا2س= 1 ، جتا2 س = 1- جا2 س أ، جا2س= 1- جتا2س ( في حالة بسط و مقام )
    2ـ جاس جتاس = (1/2) جا2س
    3ـ جتا2س = 1/2 + 1/2 جتا2س 4ـ حا2س= 1/2 - 1/2 جتا2س
    5ـ ظا
    2س = قا2س -1 6ـ جتا2س- جا2 س = جتا 2س ..
    بعض القوانين الهامة ..
    1ـ مساحة المربع = ل2 ، محيطه = 4ل 2ـ مساحة المستطيل = س ص ، محيطه = 2س+2ص
    3ـ مساحة الدائرة = ط نق
    2 ، محيطها = 2 ط نق 4ـ حجم الكرة = 4/3 ط نق3 ، مساحتها = 4ط نق2
    5ـ حجم المكعب = ل3 ، مساحته الكلية = 6ل2 ، مساحته الجانبية = 4ل2 ، مساحة الوجه الواحد = ل2
    6ـ حجم الإسطوانة = ط نق2 ع ، مساحتها الجانبية = 2 ط نق ع ، المساحة الكلية = 2ط نق2 + 2 ط نق ع
    7ـ حجم متوازي المستطيلات = س ص ع ، مساحته الكلية = 2( س ص + ص ع + س ع )
    ـ إذا كان متوازي المستطيلات بدون غطاء تكون مساحته = س ص + 2 س ع + 2 ص ع قاعدة واحدة فقط
    ـ مجموع أبعاد متوازي المستطيلات الثلاثة = س + ص + ع
    ـ مجموع أطوال جميع أحرفه = 4س + 4 ص + 4 ع
    8ـ مساحة المثلث = 1/2 حاصل ضرب القاعدة × الإرتفاع = 1/2 حاصل ضرب أي ضلعين × جيب الزاوية بينهما
    9ـ البعد بين نقطتين ل = مربع فرق السينات + مربع فرق الصادات
    ...
    ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ


    * * مع أرق الأمنيات للجميع بالتفوق* *
    الكمراني
    الكمراني
    مستشار إداري
    مستشار إداري


    ذكر
    عدد الرسائل : 730
    العمر : 37
    البلد : اليمن
    القسم والمستوى : مش مشغول
    المزاج : متعكر
      : حلول النهايات 15781610
    السٌّمعَة : 5
    نقاط : 29
    تاريخ التسجيل : 02/11/2007

    بطاقة الشخصية
    تخصصي: رياضيات
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف الكمراني الثلاثاء ديسمبر 23, 2008 3:41 am

    مشكور أخي عبد الواسع على الجهود الطيبة التي تبذلها من أجل إصال المعلومات لنا
    عبد الواسع عمر الرمانه
    عبد الواسع عمر الرمانه
    طالب لا يضاها
    طالب لا يضاها


    ذكر
    عدد الرسائل : 1299
    العمر : 38
    البلد : اليمن
    القسم والمستوى : أستاد حاسوب
    المزاج : عسل+سكرزياده
      : حلول النهايات 15781610
    السٌّمعَة : 5
    نقاط : 430
    تاريخ التسجيل : 14/10/2007

    بطاقة الشخصية
    تخصصي: حاسوب
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف عبد الواسع عمر الرمانه الجمعة ديسمبر 26, 2008 8:57 pm

    أخي الكمراني والله أنك دائما في القمه

    مشكور على متابعتك لمواضيعي

    حلول النهايات 11ek2
    shofer
    shofer
    عضو جديد
    عضو جديد


    ذكر
    عدد الرسائل : 5
    العمر : 36
    البلد : اليمن
    القسم والمستوى : راضيات حاسوب
    المزاج : مستهتر
    أختر علم دولتك : حلول النهايات Female10
      : https://i.servimg.com/u/f41/11/81/60/19/15781610.gif
    السٌّمعَة : 0
    نقاط : 8
    تاريخ التسجيل : 17/11/2009

    بطاقة الشخصية
    تخصصي: شريعة وقانون
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف shofer الجمعة نوفمبر 27, 2009 9:24 pm

    مشكور اخي اللة على الموضوع الجميل حلول النهايات Icon_wink بس ممك تشرح لي اخي ايش يعني( المدى) حلول النهايات Kopfschuettel
    طارق البغوي
    طارق البغوي
    المدير العام للمنتدى
    المدير العام للمنتدى


    ذكر
    عدد الرسائل : 2833
    العمر : 37
    البلد : الجهورية اليمنية
    القسم والمستوى : خريج قسم الرياضيات 2010م
    المزاج : متقلب ( مزاج شاعر )
    أختر علم دولتك : حلول النهايات Female10
      : حلول النهايات 15781610
    السٌّمعَة : 14
    نقاط : 985
    تاريخ التسجيل : 28/09/2007

    بطاقة الشخصية
    تخصصي: رياضيات
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف طارق البغوي الأحد نوفمبر 29, 2009 10:32 am

    أوكي بما أن الاخ عبد الواسع مشغول راح اشرح لك أنا المدى
    المدى بالنسبة للدوال هو القيم التي تعوض في الدالة
    فمثلاً لديك التطبيقات
    نعرف جيداً أن المدى
    هو المجال المقابل للتطبيق وهذا مفهوم بحسب أعتقادي لأنه يدرس في الفصول الدنيا الاساسية
    وكذلك نجد أن المدى هو الذي يحقق قاعده التطبيق
    الهذا المدى هو القيم التي تحقق المعادلة
    او تكون المعادلة محصورة بينها
    avatar
    الاميرة الوردية
    عضو جديد
    عضو جديد


    انثى
    عدد الرسائل : 1
    العمر : 34
    البلد : المغرب
    القسم والمستوى : تانية بكالوريا
    المزاج : في رحاب الاسلام
    أختر علم دولتك : حلول النهايات Male_m12
      : بالتوفيق
    السٌّمعَة : 0
    نقاط : 1
    تاريخ التسجيل : 28/12/2009

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف الاميرة الوردية الإثنين ديسمبر 28, 2009 9:20 am

    شكرا جزيلا لك اخي الكريم وجعلها الله في ميزان حسناتك
    مجـ(الـقـلـب)ـروح
    مجـ(الـقـلـب)ـروح
    طالب لا يضاها
    طالب لا يضاها


    ذكر
    عدد الرسائل : 1192
    العمر : 36
    البلد : عالم جروحي
    القسم والمستوى : أول جرح
    المزاج : هدوووء شقاوة &lt; ^-^
    أختر علم دولتك : حلول النهايات Female10
      : حلول النهايات 15781610
    السٌّمعَة : 0
    نقاط : 1273
    تاريخ التسجيل : 11/01/2010

    بطاقة الشخصية
    تخصصي: حاسوب
    المحافظة: الحديدة

    حلول النهايات Empty رد: حلول النهايات

    مُساهمة من طرف مجـ(الـقـلـب)ـروح الخميس فبراير 11, 2010 3:58 pm

    ما شاء الله عليك .. ياعبدالواسع..
    جهد وابداع وتميز وروعة ..
    اسأل الله الكريم ان يسعدك يالغالي على ماقدمته لنا من فوائد ومعلومات ..
    تقبل مروري المتواضع ودمت بووووود

      الوقت/التاريخ الآن هو الثلاثاء نوفمبر 26, 2024 11:29 am